TIM 245 Lecture 4 (4/12/17)

Agenda

1) Phase I Project Proposal and Homework 1

2) Review of Lecture 3

3) Motivating Example

4) Data Cleaning, Integration, and Transformation
Motivating Example

Problem: Predict if a tax return is fraudulent using historical data

<table>
<thead>
<tr>
<th>SSN</th>
<th>Name</th>
<th>Age</th>
<th>Occupation</th>
<th>Employer</th>
<th>Income</th>
<th>Fraud</th>
</tr>
</thead>
<tbody>
<tr>
<td>111-11-111</td>
<td>John Smith</td>
<td>22</td>
<td>Student</td>
<td>UCSC</td>
<td>30 K</td>
<td>No</td>
</tr>
<tr>
<td>222-22-2222</td>
<td>Bob Smith</td>
<td>20</td>
<td>Student</td>
<td>UC Santa Cruz</td>
<td>200K</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Learn $\Phi: X \rightarrow Y$

$\Phi(X) = \{ \text{Yes}, \text{No} \}$

Φ selected k neighbors

A Simple Classification Model

Use a majority vote of the closest instances in the historical dataset

This model is called k-Nearest-Neighbors. The value k controls the number of neighbors used in the vote.
Simplified KNN Model

```
+  +  +  +  +  +

Income

500k

0  100

Age

closeness is determined based on a
distance function.

Example: Euclidean distance

\[
\text{dist} (d_i, d_L) = \sqrt{\sum_{j=1}^{m} (x_{ij} - x_{Lj})^2}
\]

Missing values:
- both missing \( \rightarrow 1 \)
- one missing \( \rightarrow \max (1x_{ij}, 1x_{Lj}) \)

Nominal Values:
- equal \( \rightarrow 0 \)
- not equal \( \rightarrow 1 \)
1. Data Cleaning, Integration, Transformation

Data cleaning issues:

1) Missing values
2) Duplicates
3) Outliers
4) Noise / Inconsistencies
Missing Values

Example: 45K, 60K, NA, 35K

Approaches:

1) Ignore or remove

2) Fill in manually based on domain knowledge / EDA
   a) one instance rule
   b) rule for entire dataset

3) Fill in using central tendency of the attribute (mean, median, mode)

4) Predict based on other attributes
   e.g. regression
Duplicates

Example: John Smith, John Smith

Approaches:

1) use a unique identifier

2) use a combination of attributes that approximate a unique identifier

Outliers

Example: 45K, 60K, 500K, 35K

Approaches:

1) Do nothing, leave in the dataset

2) Remove instances from the dataset

3) Replace attribute values (see missing value)
Noise / Inconsistencies

Noise = Measurement Error, Random Fluctuations, variation that isn't relevant to the problem

E.g. 30, 500, 31, 250, 30, 750

Inconsistency = human recording "error" in nominal values

E.g. UCSB, UC Santa Cruz, University of California Santa Cruz

Approaches to cleaning noise:

1) Group the data into bins and perform local smoothing
   a) Smooth by bin mean
   b) Smooth by bin median
   c) Smooth by bin boundaries

2) Predict based on other attributes, e.g., regression
Approaches to Cleaning Inconsistencies

1) Write rules based on domain knowledge and EDA, i.e., find and replace

2) Use Named Entity Recognition (NER) to map to a canonical value

3) Cluster instances with similar values into groups and then write a rule for the entire group of instances

Edit distance is a useful similarity measure for clustering nominal string values

\[ \text{Edit distance} \triangleq \text{minimum number of substitutions to transform } X_{ij} \text{ into } X_{lj} \]

Hammings distance: Substitutions
Levenshtein distance: deletions, insertions, and substitutions

Example: \( \text{ATT} \rightarrow \text{AT&T} = 1 \)
\( \text{UCSC} \rightarrow \text{UC Santa Cruz} = 9 \)
\( \text{ATT} \rightarrow \text{UCSC} = 4 \)
Data Integration

Combine datasets from multiple sources into a single coherent dataset.

Reasons for data integration

1) Bring in additional attributes to potentially improve model performance.

2) Want to predict an attribute that is not currently in the dataset.

3) Find association rules for attributes not in the dataset.

4) Want better cluster separation.
Approaches:

1) Join on a unique identifier, e.g. SSN

2) Use a combination of attributes that approximate a unique identifier and fuzzy matching (e.g. edit distance)

3) Use NER to create a unique identifier
Data Transformation

Changing attribute values to make them

1) More suitable for data mining algorithms

Balance the weight of numerical attributes in distance based models

Example: Age vs Income in Euclidean space

Methods: Min-Max normalization, Z score normalization

2) More suitable to human interpretation

Generalization of nominal attributes to higher level concepts

Example: UCSC, UCB, UCSD

Methods: EDA, Domain knowledge, rules
Min-Max Normalization

Linear transformation that maps the values of a numerical attribute to the range \([a, b]\)

Let \(X'_{ij}\) denote the normalization of \(X_{ij}\), then

\[
X'_{ij} = \frac{X_{ij} - \text{Min}(A_j)}{\text{Max}(A_j) - \text{Min}(A_j)} (b-a) + a
\]

Example: Suppose that the minimum and maximum income are $5,000 and $500,000, respectively.

We want to map income to the range \([0, 1]\)

\(X_{ij} = 45,000\)

\[
X'_{ij} = \frac{45,000 - 5,000}{500,000 - 5,000} (1-0) + 0
\]

\(= 0.08\)
Z Score Normalization

Values are normalized based on the mean and standard deviation of $A_j$.

$$X'_{ij} = \frac{X_{ij} - \bar{A}_j}{\sigma_{A_j}}$$

Where $\bar{A}_j$ and $\sigma_{A_j}$ are the mean and std dev of $A_j$, respectively.

Example: $\bar{A}_j = 52,000$
$\sigma_{A_j} = 5,000$

$$X'_{ij} = -1.41$$